Sobolev and max norm error estimates for Gaussian beam superpositions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Error estimates for Gaussian beam superpositions

Abstract. Gaussian beams are asymptotically valid high frequency solutions to hyperbolic partial differential equations, concentrated on a single curve through the physical domain. They can also be extended to some dispersive wave equations, such as the Schrödinger equation. Superpositions of Gaussian beams provide a powerful tool to generate more general high frequency solutions that are not n...

متن کامل

Sobolev-type Error Estimates for Interpolation by Radial Basis Functions

We generalize techniques dating back to Duchon 4] for error estimates for interpolation by thin plate splines to basis functions with positive and algebraically decaying Fourier transform. We include L p-estimates for 1 p < 2 that can also be applied to thin plate spline approximation. x1. Introduction Radial basis functions are a well-established tool for multivariate approximation problems. A...

متن کامل

Application of the Norm Estimates for Univalence of Analytic Functions

By using norm estimates of the pre-Schwarzian derivatives for certain family of analytic functions, we shall give simple sufficient conditions for univalence of analytic functions.

متن کامل

Spatial superpositions of Gaussian beams

We explore an interferometric beam shaping technique that considers the coaxial superposition of two Gaussian beams. This technique is traditionally implemented in a Mach-Zehnder interferometer; however, to avoid phase shift drift due to vibrations and thermal effects we employ amplitude and phase modulation with a spatial light modulator (SLM) to achieve the beam shaping. We consider two Gauss...

متن کامل

Rank, Trace-Norm and Max-Norm

We study the rank, trace-norm and max-norm as complexity measures of matrices, focusing on the problem of fitting a matrix with matrices having low complexity. We present generalization error bounds for predicting unobserved entries that are based on these measures. We also consider the possible relations between these measures. We show gaps between them, and bounds on the extent of such gaps.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematical Sciences

سال: 2016

ISSN: 1539-6746,1945-0796

DOI: 10.4310/cms.2016.v14.n7.a12